AD-A021 055

A NEW APPROACH TO RECURSIVE PROGRAMS

Zohar Manna, et al

Stanford University

Prepared for:

Office of Naval Research

December 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT UF COMMERCE

821 5%

Stanford Artificial Intelligence Laboratory

Memo AIM-276

Computer Science Department
Report No. STAN-CS-75-539

December 1975

-

SO

Y

\

-_—

DA@21(

o
4

[..'

A NEW APPROACH TO RECURSIVE PROGRAMS

by

ZOHAR MANNA+ AND ADI SHAMIRse

Research sponsored by

Advanced Research Projects Agency

ARPA QOrder No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

boproducat by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Depanmeni of Commercs
Sprngheld, VA 22131

[’
Q‘C'\QD) N’Opo.
sV N N\,
Q “p -
x ,_',4" ©
i ~ w
) {‘ - -
- el /<
. s .
Oo\ B S

SITTTMRNY A

e

v f p
¥,

Stanford Artificial Intelligence Laboratory December 1975
Memo AIM-276

Computer Science Department
Report No. STAN-CS-75-539

A NEW APPROACH TO RECURSIVE PROGRAMS
by

ZOHAR MANNA+ AND AD! SHAM Ree

ABSTRACT

In this paper we crincally evaluate the classical least-fixedpoint approach towards recursive
programs. We suggest a new approach which extracts the maximal amount of valuable
information embedded in the programs. The presentation is informal, with emphasis on
examples.

\
\

-

«Formerly of the Weizmann Institute of Science, Rehovo:, Israel Presemt Address:Artificial
Intelligence Laboratory, Stanford University, Stanford, California 94305 #sFormerly of the
Weizmann Institute of Science, Rehovot, Israel Present AddressComputer Science Department,
Uriversity of Warwick, Warwick, England

This research was supported by the Advenced Research Project: Agency of the Department of
Defense under Contract DAHC 15-73.C-0435 . The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University, ARPA, or the U. §.
Government.

Reproduced in the US.A. Available from the National Technical Information Service, Springfield,
Virginia 22151.

PR |
CE .

Af

$AVUA i gran

U UTAY ReuRR uu 5
>

- UNCYASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)
REPORT DOCUMENTATION PAGE SEPORE COMPLLTING PORM !
[| HEPCAT suvliLA x 2. GOVTY ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
[STAN=CS-75-539, AIM276
[4 TITLE rand Subtitte) ' S. TYPEZ OF REPQORT & PERIOO COVERED
A New Approach to Recursive Programs Technical
S. PERFORMING ORG. REPC AT NUMBER
{ 7. AUTHOR(e) 8. CONTRACT DR GRANT NUMBER(e)
Zohar Manna and Adi Shamir DAHCL15-T73-C~04 35
9. PERFORMING ORGANIZATION NAME AND AODRE SE 0. ::22ll.A:o!.L‘ua:rTf.Nv"o.Jl!gs‘r. TASK
Artificial Intelligence Laboratory |
Stanford University ARPA Order 2494
Stanford, California 94305 '
11 CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT DATE
Col.Dave Russell, Dep. Dir., ARPA, IPT, December 1375
ARPA Headquarters, 1402 Wilson Blvd. T3, NUMBER OF PAGES
Arlington, Virginia 22209)
T4 MONITOIRING AGENCY NAME & AOORESS(!! diilerent lrem Centrelling Olllce) 18. SECURITY C'.ASS. (of thie repert)
Philip Surra, ONR Representative
Durand Aeronautics Building Room 165 %
Stanford University Se DECL ASSIFICATION DUWNGRADING
sCHeEDULE

Stanford, California 94305

6. OISTRIBUTION STATEMENT (ol thie Repert)

Releasable without limitations on disseminacion.

17. DISTRIBUTION STATEMENT (of the sbetract entered In Block 20, 11 ditlerent lrem Repert)

19. SUPPLEMENTAMNY NOTES L. o

19 XKEY wORDS (Continue on reveree oide |l necessary and Icentily by block number)

29. ADS 'RACT (Continue on r~verse olde If necescery and Identily by bleck manber)

In this paper we critically evaluate the classical lemst-flixed point approach towards
recuraive programs, We cuggest n nes apjrosch widch wxtracts the maximal amount of

valualle fnltomation embedded in the programa. The presertatlon in informal, with i
) emphngin on exemples,

DD FORM 1473 EO0ITION OF | NOV 65 1S OBSOLETL
by S/N 0102-014-6601 | St

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1. Introduction

The classical stack implementation of recursive programs doee not alwaye give
results thet correspond to our neive intuitive expectations. For Inetance, ona
might expect the program

Fix) <ee 8'Fix)
over, say, the natural numbers, to be identical to the program

Fix) <ea B,

eince for any number y, @'yey. Similarly, the program
Fix) <ee if Fix)=@ then 8 olse 8

would be expected to yield the zero function. Since the teet Fix)eB e
irrelevant, nothing but 8 can be produced ees en output. However, atack
implementations and thy conventional theory of prog-ame dictata that both of
these programs be undefined for ail Inpute. Users of recureion ara eo accuetomad
to this implementation that they are no longer surprised at thie unintuitive
interpretation, and never stop to consider any alternative meanings of recureive
programs, !

A recursive program, such as those adove, looks I|ike an impiicit functional
equation relating the values nt the funciion variabie F. Such an equation mey In
general heve many possible so!ution functione (fixedpoints) .Since there ie no unique
solution, the semantics o’ recursive programe ;s seiected rathar then impiied.
The classical stack Implsmentation yields ons solution, the least defined fixedpoint]
of the program. As ue have sesn above, the hlind seiection of the isset defined
solution ie inadequate, beceuss & recursive program often containe more
information than this solution exhibits.

In this paLs~ we suggest the selectior ot a different and more defined eoiution,
which aluays sxiete end which conteine ev much information es possibie. %

In Section 1] we discuss various possibis approaches towards racureive programe,
ir an attempt to characterize the "best” one. On the basis of thie diecuseion we
introduce our new optimal fixedpoint approach in Section 111, which e exempiified in
Section IV. Various techniques for proving propsrties of optimei fixedpointe ere
presented in Section V,

Gro -

This paper ie an informal expoeition of the optimai fixedpoint thaory. Mora
formal treatment is given in Manna and Shamir (1975) and Shamir (1976).

11. Recursive Programs and Their Fixedpuints

Consider, as a typical example, the ftollouing recursive program Pl over the
natural numbers (see note (i)}:
Pl: Fix,y) <=e it x=B then y else F(F(x,y-1) Fix-1,y)).

Any solution ftunction to this program must satisty the rslations dictated by the
program, i.e.,

(a) F(O.y) ey tor all y, and
(b) Fix,y) @ FIFx,y-11, Fix-1,y)} tor all xsB and all y.

Let us analyze uhat functions satisfy these two conditions,

The main part of this program is the functional
PIF): if xeB then y else F(Fix,y-1) Fix-1,y)) ,

in which the symbol F is considerea as a function veriable. Given any partial
function fix,y} , the result of substituting ¢ for F yields @ new partial

function, denoted by Ti¢). For example, it we substitute the function
tlx,y) =y

tor Fix,y) ., ue obtain the tunction

Pt (x,y) o if x=B then y else ¢(¢(x,y-1), fix-1,y))
o if x=8 (Aen y else f(y-1,y)
- U,
Thus, the function t(x,y} has the interesting property that ¢(x,ylef(f)(x,y) ,
that is, f is a solution function to the functional equation Fix,y)«?[F) (x,y) .

Since f does not change under the application of £, it is said to be a fixedpoint
of the given recursive program.

An entirely different function uhich is a fixedpoint of tihe program ie:

gix,yl =« max(x,y) .

- T T . [e |
: IE .

! Substituting g for F in ¢IF] , ue obtain:

Tlg) (x,y) o if xeB then y else max(maxix,y-1),max(x-1,y)) .

By the definition of max, this can be siaplified to:

7(g) (x,y) @ if =B then y else max(x,y-1,x-1,y)
e if x=@ tAen max(x,y) else max(x,y)
e maxix,y) .

Thus gix,y) s a fixedpoint of the recursive program P,
Yet another exampie of a fixedpoint is the partial function:

[{x,y) = if xe@ then y ¢lse undefined .

To shou that thie function is indeed a fixedpoint of our recureive program, ue
substitute ! in T , treating undefined as any other vaiue. For thlie purpoes we make
the general assumption that all functions and predicites appearing in ¢ gre
"naturally extended,” in the ssnse that they are undefined uhenever st leset one
of their arguments is undefined. Thus, we have:

Tl (x,y) = if xeB then y else Ul(x,y-1) ,1(x=1,y))

e if x=8 then y else

LUf xeB then y-1 else undefined, |(x-1,y))
if %= then y else l(undefined, l(x-1,y))
if x=@ then y else

if undefinedd then l(x-1,y) else undefined

if xe@ tAen y else undefined .

These ‘hree functions do not exhaust the set of all fixedpoint: of the program,
An example of an infinite class of fixedpoints (Indexed Ly the function @ over
the natural numbere) isi

ha(x.g) o {f xeB then y else al(x),

A function ha(n.g) can be shown to be a fixedpoint of the program, provided that

the function aln) satisfies:

a(n)w® and ala(n))ea(n) for all n > @.

P — o - . - W - P TRy — e

O W

Examples of tunctions satisfying this condition are the identity function, any
non-zero constant function, or the function which assigns to any natura' number n
its greatest prime factor.

There are actually infinitsiy many more distinct fixedpoints, the exact
characterization of which is quite complicated. We can thus see that the eet of
all ftixedpoints of the program may contain many functions with extremely
diversified behavior. All these functions can be considered as "soiutione” to the
equation represented by our recursive program,

Some of these fixedpoints are related by the "less defined or equai” relation. We
say that a function rix,y) is less defined or equal to six,y), or that six,y) ie more
defined or equal to rix,y), it for any pair of natural numbers {a,b) , it rla,b) ig
defined than s(a,b) is aleo defined and has the same value: thue, either ri(a,b)
is undefined or else r(a,bles(a,b) . Note that a function rix,y) may bo neither
"less defined or equal” nor "more definsd or equal” to six,y).

This relation introduces some structure into the set of all fixedpointe of a
recursive program. A fixedpoint is called least (defined) it it is less defined or
equa’ to any other fixedpoint of the prog-am, Oually, a ftixedpoint ig called
greatest (defined) it it is more defined or equal to any other fixedpoint,

Among the tixedpoints of the program Pl , the tixedpoint:
[{x,y) o if x=8 then y else undefined

stands out. Since any fixedpoint of Pl must be defined as v for xe@, it g
clearly the program's lesast fixedpoint.

Least fixedpoints of recursive programs have long attracted the attention of
computer science theoreticians for three main reasons (see, e.g., Manna [1974)),;

{a) Any recursive program must have a {unique) isaet
fixedpoint. Thus the least fixedpoint can be used to
unambiguously define the "meaning” of recursive programs.

{b) The ciassical stack implementation of recursive programy
computes the least fixedpoint of the program,

(c) There are pouertul methods for proving properties of the
ieast tlixedpoint of progranms.

Ae a result, the least fixedpoint was chosen as the “proper" solution of
reacureive programs and other fixedpoints uere absoluteiy dlscarded by researchere
from fturther consideration. However, we have an important objaction to thie
choice: it contradicts the intuitive contept that the more defined the solution,

ol

the more vaiuable it is. Indeed, there are many recursive programe for which the
least fixedpoint does not contain all the ueeful information embedded in the
program, information which is contained in more defined fixedpointe.

Consider, for exampie, the following recursive program P2 for solving the
discrete form of the Laplace equation, where F(x,y) mape paire of integere in
(0,108] x (0,180) into reals:

P2: Fix,y) = if xB then 2y
else it x=180 tAen 3y+300
else it ,oB them 3x
else it yalBO then 4x+200
else [F(x-1,y)eF O, y-1)4F (xel,y) oF (x,y+1)1/6 .,

This recursi-e program has sxactly tuwo fixedpoints:

Y] if wa@
3y+370 if x=108
fix,y) » € 3x it yeB

4x+200 if yel00
undefined otheruiss
and
2(x,y) = 3xe2ys+(x.y)/108 for Bsx,ysidd .

There is no doubt that the sscond (totally defined) fixedpoint gix,y) containe
much more valuable information than the (mostly undefined) function f(x,y) .
Mereover, it is quite obvious that any programmer writing such & recureive
program unconscious!y thinks about the function gix,y) 8s the "eolution” of the
functional equation reprcsented by ths program. Thus, the arbitrery selection of

the 'east fixednoint as the "proper solution” seems a poor choice in thie caes.

This example might suggest a turn to ths other extreme - coneidering greateet
fixedpoints rather than least firedpoints. Unfortunateiy, there ere meny programe
for which there is nu such grea‘est fixedpoirt. as program Pl shous: There ie no
funct on which is more defined than all the fi~sdpoints exhildited. i

A more modsst approach could be the selection of a maxima! [fixedpoint, l.e., a
fixedpoint which is not less defined than any other fixedpoint. However, there
are difficuities with this choice too. Whiie any recursive progrem hae euch a
fixedpoint, it may have more than one. This ie demonstrated by program P1, in
uhich the functions fl(x,y), glx,y) and hc(-.y) are aii examplee of total, and

therefore maximal, fixedpoints of Pl. This indicates that Pl ie an "underdefined"”
recureive program - the reiations etated betieen vaiues of F for varioue
argumente (x,y) are not wufficient to uniquely deterrine one defined vaiue of the

5

fi=eapoint. Thus a randomiy chosen maximai fixedpoint s by Nno means super ior to
the least fixeadpo:nt !(x,y) 1n thig case.

An art: ¢ ciai example which fiustrates th s probiem 1g;
P3: Flix) <e Fix)

Over. 83y, the se! ot the natura nyumpera, Any partiat ¢unction over the natural
numbers s clear!ly a fixegpoint of thie ewtremel, underdef ney" program. The
least ¢iwecpo.nt o¢ F3 'S the ‘otaliy uncetined tunction, ang eve 'y totai
func® on over *trme atura) nuTbers s a maximal fixedpoint. |n sutn a case, the
'edst ¢4 iwedpo nt seems the mogt appropriate solution, since np other fixedpoint
can ve ccnsidered a more “valuable" solution of this progranm,

I The Optimal Fixedpoint

Thus *ar ue nave Objecteo to 'he ciassica €ast tixednoint and the proposed
iTedtest ang mas w3l ¢ ixeppn At apt.moaches to recursive rFrograms. e now suggest
A red approach -- the “opt o omal fiwedroint approach”. | combines the nice
properties g+ gl the atove approacres i n that tha ¢ s=edpoint selected aluaye
Miauely existe, and ot supp!ies the maxmal amount of valuable information
embedsec n the program, Thue in the three examples considered so far, the ney
doproach wili select the feast fixeopoint n the "urderdefinad" programs Pl ang
P3 . but witl select the desired total ¢ixedpoint (uhich differe from the leaet
fimecroint) in the Laplace program P2

in order to uevelop the new approach we first introduce the notion of
‘consistency”. Tup functions are said to be consslent if tney have identical values
for any argument for unich hoth are defined. For example, tet

e 4 xad
ti0x) eQundefined ¢ e

(%] Otheryige

e [K; l-e
fz(l) oql 1 f oxe]

undefined otheruise

i f xe8

2 (R} x-l

,3()() -

undefined otheruise

Then ¢, and f2 are consistent, as are fi and f3 . However, fa and f3 are not

consietent, eince for xel both are defined and have difterent valuse. Note that

6

no tuo of these furctions are related by the "isss defined or equal” relation.

Tuo consistent ‘unctions can be regarded as being "approximately the same”: One
function may be defined for several arguments at which the other is unde f i ned,
and vice versa; but the tuwo functions cannot have contradictory defined values.
They can be considered as two incomplete representations of tha same knou ledge,
and one can define a function which is more defined than both of them, thus being
] superior to both partial representations.

[He nowu define a fixedpoint ¢ of a program P to be fxp-consistent 1t ¢ is consletent
Hith any other fixedpoint g of P . That is, uhenuver f is defined, say fin)ea ,
then tor any other fixedpoint g , either gi(x) is undefined or gix)ea . Thus the
] value a is implicitly defined by the program as the only possibie defined
solution at x. Every recursive program has at least one fxp-consietent
fixedpoint, since the least fixedpoint of the program is less defined than (and
thus consistent with) any other fixedpoint of the program. Thus, the claessical

least fixedpoint is one of these valuable fixedpoints, but only one of many.

The fxp-consiatent fixedpoints can be considered as the only genuine soiutione of
a recursive program, since only thsy contain uniquely detsrmined vaiuas. We can
thus concentrate our attention on the subset cf fxp-consistent fixedpoints rather
than on the set of all fixedpoints of the propgram. In this restrizted set of
solutions we are naturally interested in maximally defined solutions of the
program. While the greatest fixedpoint approach was not appiicable to the eat of
all fixedpoints of the program, wue now fortunately have (see note (1i)]):

N ™

Basic Theorem: The set of all fxp-consistent fixedpoints always contains a (unique) greatest element.

Let us nouw look a3t the set of fixedpoints from a different point of view.
Previously, we discussed the possibility of selecting a maximal fixedpoint ae the
"proper” solution of the program. This approach uas no: applicable, since the
program may have infinitely many such solutions with no information common to all
of them, and no one of uhich seems superior to the others. A natural way to
resolve this problem is to find a fixedpoint which extracts the unanimity among
these maximal fixedpoints, thus being a satisfactory representative of aili of
them. Such a fixedpoint can be obtained by considering the fixedpointe which are
less defined than all the maximal fiwxedpoints. For these fixedpoints we again
have [see note (iii)):

Basic Theorem: The set of fixedpoints which are less defined than all maximal fixedpoints of the
i program, has a (unique) greatest element.

We have thus arrived at tuo possible definiticns of the "most desired solution"”
of a recursive program, the first by ascending as much as possibla from the leaet
fixedpoint in the set of fxp-consistent fixedpoints, and the second by deecending
from the maximal fixedpoints.

It is quite natural to relate these two "desired sciutions" of 8 recureive
program. Surprisingly enough, these tuo fixedpoints aluays coincide, and we call
the fixedpoint thus def.ned the oprimal fixedpoin: ot the program.

By the definition of the optimal fixedpoint, it follous that any recureive
program has a unique optimal fixedpoint. |f the prorram has only one fixedpoint
which is fxp-consistent, the optimal fixedpoint coincides with the clgasical
least fixedpoint, On the other hand, if the program has a unique maximal
fixedpoint, the optimal fixedpoint coincides with it., In all other cases, the
optimal ftixedpoint "floats" someuhere in the set of all fixedpoints., UWe
tllustrate this with the following diagram (see Fig. 1), which summarizes aome of
the structural properties of the set of fixedpoints of recursive programs. In
this diagram an upper section (Fig., 2A) represents the set of all fixednointe
which are more defined or equal to f similarly, a lower ssction (Fig. 28)
represents the set of all fixedpoints which are less defined or eval to f . The
"strategic position” of the optimal fixedpoint is clearly visible,

IV. A Detailed Example

Consider the following tamily of recursive programs over the natural numbere:

Pyt Flx) <em if xeB then i elze j*F(F(x-1)) .

We shall investigate the structure of the set of fixedpoints for a few recureive
programs in this family, thus illustrating the behavior of the optimal fixedpoint
approach in various situations. In order to systematically analyze the possible
values of fixedpoints for some xea , we evaluate the term F(a) by repeatediy
substituting fIF] for various occurrences of F , Note that we make use of the

fact that F represents a fixedpoint of the program, but not necesearily ths leaet
fixedpoint or the optimal fixedpoint.

Programs P,

Fx) <me if xa@ then B else j'F(F(x-1)) .

Let us analyze the possible values of F for successive arguments x

The maximal fixedpoints

-The optimal fixedpoirt

~-The fxp - tonsistent fixedpoints 1

F(@) = if B=B then @ else j*FIF(8-1)) = B

F(1) = if 128 then 8 else j*F(F(1-1))
= j*F(F(8)) = j*F(8) = jB = @
F(2) = if 248 then 8 else j*F(F(2-1))

j'FIF(1)) = j*F(B) - j'0 = B

It can be easily showun (by induction) that F(x)=8 for any natural number x . Thus
for any j , the program P.’, has exactly one fixedpolnt:

f(x) « 8 for any natural number x .

It is cleariy the program’s least fixedpoint as well as the program'e optimal
fixedpoint.

The behavior of the programs changes drastically when we take | to be 1 rather
than 8 .

Program P, g:

Fix) <ew f x=B then 1 else B8'F(F(x-1)) ,

The value of F(B) is clearly 1 , by a direct application of the recureive
definition. For x=1 , however, we get:

F(1) = if 1@ then 1 else B°F(F(1-1))
= B'F(F(B)) « B°F(1) .

We now have exactly two possibie values for F(1) :

F(1) « undefined or F(l) = 8 .,
Selecting the first possibility, F(1) = undefined, we obtaln:

F(2)

if 228 then 1 else B'F(F(2-1))

8:'F(F(1)) « B°F (undefined)

8° (if undefined=8 then 1 else 8°F (F (undefined-1)))
8‘ undefined = undefined .

Continuing in this way, we get the fixedpoint:

18

L e e

if xe@

fix)
undefined otherulse .

However, !f we celect the eecond possibility, F()'e@ , we have to continua in the
foilouwing wiy:

F(2) = if 28 then 1 else B°F(F(2-1))
e 8'F(F(1)) = 8'F(0) « 81 « 8,

and e0 on. He thue get the fixedpoint:
1 if xed

g(x) e
‘.G otheruieoe .

The functione f(x) and g(x) are clearly the only possible fixedpointe of the
program. Since fi{x) ie lese defined than gix) , fi(x) ie the program'e ieset
fixedpoint while g(x) ie the program'e optimai firedpoint.
Program P, ;:

Fix) <ee if x=@ then 1 else F(F(x-1)) .

The va'us of F(8) ie necessariiy 1 . Evaluating F(1) , we get:

F(1) = if 128 then 1 else F(F(1-1))
= F(F(B)) « F(1) ,

and thus any naturz! number (as well as the vaiue undefined) is a solution of thie
equation. 1f we chooee F(l)eundefined , we get (exactly ae in progrem Pig) tha

fixedpoint:
1 if wxed

fix)
ndefined otheruise .

Stnce any other fixedpoint of P|; muet aieo be 1 for x=8 , fi(x) is clearly the
x; program’'s leaet fixedpoint.

Suppose we choose F(l) = 8 . HWe *hen continue with:

11

T T R e - LS o - - > Al

F(2) = if 220 then 1 else FIF(2-1))
= F(F(1)) = F(8) =1
F(3) = if 3=8 then 1 else F(F(3-1))

FIF(2)) « F(l) = 8
and so on. HWe thuw get the fixedpoint:
1 if x is even
g(x)
@ if x is odd .

lf we take F(l)=l , we obtain:

F(2) = if 28 then 1 else F(F(2-1))
« FIF(1)) =« F(1) =] ,

and =0 on. We thus obtain the fixedpoint:

hix) = | for any natural number x .

If we take FI(l} » 2 , we get:

F(2) = if 2«8 then 1 else FIF(2-1),
s« FIF(1)) - v {)

and again we may choose any desired value for F(2) (including the vaius
undefined) .

It is possible to continue this dstailed analysis and find infinitely many more
fixedpointe of P,; . But in order to characterize the optimal fixedpoint of this

program it suffices to consider just one mors fixedpoints
k(x) = x+1 for any natural number x .

Since the optimal fixedpoint “hould be less defined than both maximai fixedpointe
hix) and ki(x) , it cannot be definsd for any x>8 (for any such x both hix) and
k(x) are defined and h(x)wk(x)) . Therefore the program's optimal fixedpoint
coincides in this case with the program’s leaet fixedpoint f(x) .

Progvav;n P2t

Fix) <o if x=@ then 1 else 2°F (F(x-1)) ,

12

L e _m aied e Mk B o e s b et T et n bl

Ae before, all fixedpointe of Pi2 8re defined @ae 1 for xe@ . For xel we have

F(1) = if 18 then 1 else 2°F(F(8)) « 2°F(1) .

We have arrived at an equation (for the vaiue of F(1)) which hae exactly tuo
solutione:

F(1) « undefined or F(l) « 0.

It we decide to take the value F(l) = undefined, we aga:n get the fixedpoint:
1 It xa
fix) =
undefined otheruise

which ie the program’s leaet fixedpoint.

Choosing the other possibllity, i.e., F(l)e8 » HO geti

F(2)

2°F(F(1)) = 2°F(8) = 2,

F(3)

2°F(F(2)) a 2°F(2) = & ,

and finallys

F(4) = 2°F(F(3)) = 2°F(4) .

The values 'for F(2) and F(3) wers implied, once we chose F(1)e8 . But for F(4)

we again have to choose between the tuo possible solutions of the
namely,

L]

equation,

F(4) = undefined or F(4)ed .

It we choose F(4) eundefined , then an crgument elimiler to the one used previouely
ehowe that for any x>4 , F (x) sundefined, Thue we have the fixedpoint

it x=0
1 xel
if xe2
If xe3
undefined otheruise

gix) «

SN © -~

13

Houever, if ue choose F(4)e@ , we must rontinue as follous

FIS) @ 2°F(F(4)) = 2'F(B) = 2

F(6) = 2F(F(S)) = 2°F(2) = 4

F(7) = 2°F(F(B)) « 2°F(4) « @,

and so on. The periodic function thus obtained is definea for any ratuce! number
x as:

if x=0

if xal+3i

if xe243i) ie0,1,2,...
if xe343i

hix) =

SN e —

To sum up, the recursive program P,, has exactly thres fixedpoints, each
generated by a different selection of a solution to the above equations:

1 if xe@
fix) =

ndefined otheruise

i if xe@

] if xa]
glx) = &2 if =2

[if xe3

undefined otheruise

| if x=@

] if xele3i
hix) « £ 2 if x-2+3l}i-9.1,2....

4 if xe343i

Note that f is less defined than g and g is less defined than h . The only
maximal fixedpoint of thie program is h , and thus It is aleo the program’s
optimal fixedpoint.

Program P, 4:

F(x) <ee if xa@ then 1 else 3-F(F(x-1)) .
Ae befors, F(B)el , and there are exactly two possible values for F(1)

14

F(l) e undefined or F(l) =8 .

The firet possibility ieads to the same ieast fixedpoint as before:

1 if xel
fix) =«
undefined otherwise

The second possibility isads to:
F(2) = 3°F(F(1)) « 3°F(8) = 3,

F(3) = 3'F(3) .
Here we have the same choice once more,

F(3) e undefined or F(3) = 0.

1t we choose F(3)=undefined we get the fixedpoint

i it va@
f if xe}
gix) e 3 if x=2

undefined otherwise

Houever, if we choose F{3)=@ we continue uith
F(4) = 3'F(F(3)) = 3°F(@) = 3,

F(S) =« 3°F(F(4)) « 3°F{3) » @,

and so on, and we obtain the third possibie fixedpoint:

I if xel
h(!) L] 0 if '.l+2i iia.l.z....
3 if xe242i

The optimai fixedpoint of P53 ie ciesrly hixi .

Program P, 4

Fix) <ew if xoB then 1 else 4*F(F(x-1)) .
15

P—.

o

Thie program behaves entirely differentiy from ihi cases coneldered previouely.
For xe8 , we etill get F(@)el . For xel , we get:

F(1) « 4°F(F(B)) « &'F(1) ,
and we have the same choice as beforae,
F(1) = undefined or F(l) « @ .

lf we take F(1)=8 , we continue with:

F(2) = 4*F(F(1)) = 4°F(B) = 4 ,

and therefore:

F(3) @ 4*F(F(2)) e 4*F(4) = 16°F(F(3)) .

Here we encounter a new problem: We do get an equation for the value of F(3) ,
but F(3) is containsd in another occurrence of F on the righthand eide of the
equation. Since we do not knck the global behavior of this function, we cannot
simply eolve this equation. However, based 'won results In number theory, It can
be ehoun that any fixedpoint of this program must be undefined for x23
Therefore, the program P14 has exactly two fixedpoints:

1 it xed
fix) =
undefined otheruise

and
1 if x=@
8 It xel
gix) e 4 if xe2

undefined otheruise .

Since f is less defined than g . f le the program’s least fixedpoint and g ie the
program’e optimal (and maximal) fixedpoint. In contrast to programe P,,. P,., and

P13, the optimal fixedpoint |le not a total function, even though It ie stili more
defined than the least fixedpoint.

Finally, we conslider

16

Program P q:

Fx) <oa if xa@ then 1| else S°F(F(x=1)) .
For x=8 we clearly have F(@)=l . For xel , we heve, as usuel, the choice betueen

F(1)eundefined and F(1)@ . 1f ue taks the sscond possibiiity, ue get F(2)aS . The
difflculty arises when coneidering the possibie valuss of F(3)

F(3) « S'F(F(2)) =« S'F(5) » 25°F(F(4)) « 26°F(S°F(F(3))) .
This equation is too difflicult to be Immadlately solved.

Based upon consideretions which ars beyond the scope of this paper, ue
can find the follouing tuo fixedpoints of P, g

I I f xe@
g(x) «40 It xele2i
S if x-ZOZi} i=8,1,2,...
and
| if x=0
"] it xelaJi
ga(x) =45 it xe243i i=0,1,2,...
g if x=343i

The optimal fixedpoint must be less defined than both of these two totai (and
therefore maximal! fixedpoints, so it can be defined only at arguments of the
form xel+bi and x=2+6i , for i=0,1,2,... . However, the function thus obtained ie
not a fixedpoint of the program (e.g., try xe7). It can be shown that the only
tuo fixedpoints of P,s which are less defined than thle function sre:

1
1 1§ xeB 3

fix) =
undefined otheruise
and
1 I f x=@
) if xel ﬁ
hix) =« {5 if xe2 ;

(undcﬂncd otheruise

The function f(x) is clearly the program’s least fixedpoint. The tixedpoint h(x)
le fxp-conelstent, eince all ite valuss are uniquely determined by the squations.

Since the optimal fixedpoint must be either fix) or hix) y #nd the more defined
function hix) is fxp-censistent, hix) is the program’'s optimal fixedpoint. Nota

17

the similarity betussn the optimal fixedpointe of Pla ®nd Py - both are defined

only for xe@ , xei and x= 3 in P4 this is dus to the leck of possible
fixedpointe, while in Ps it is due to their multiplicity.

One could continus to check all programe Piy ith j greater them S ., However, we

beiieve that the preceding examples sufficiently illuetrete the veriety of
poeeible casee in the rnew optimal fixedpoint apprcach. It s sspecially
interesting to note that although the least fivedpoint of all programe PIJ is the
same, the sets of all fixedpoints, as well 2s ths optimal fixedpoints, of these
programe differ uidely. We summarize this situation in Fig. 3, whara we exhibit
the sets of fixedpoints of programs P, g to P,y . The Isaet fixedpoint of eny such
program is repressnted by the lowest dot, while the optimal fixedpoint e
represented by the dot surrounded by a circle.

In the examples considered so far, various techniquss were used to find the
correct value of the optimal fixedpoint. Some of thsse techniques are easily
mechanizable, uhile others resquire desp mathematicai knouledge. Uniike the lsast
fixedpoint of a recursive program, the optimal fixedpoint need not be o
computable function. Thus there cannot bs a "complets" computation rule which
aluays computes the optimal fixedpoint, but we can still hope to find good
computation techniques which are applicable to large subssts of commoniy used
programe. The examples discussed in this sesction give the flavor of a few such
techniques.

V. Proof Techniques

In this section we illustrate several techniques for proving properties of
optimal fixedpointe. UWs wish to show that optimal fixedpoint f of a given
recureive program P hae some property Qlf] without actually computing the
fixedpoint. The property Q is a functicnal predicate, which may characterize the
overall behavior of f , For exampie, Qif) cen state that f is @ total functlion,
or that f equale soms given function g , or that ¢ ie monotonically increasing
over some ordered domain, etc.

Generally speaking, there ars thres slements involved .n ths procses of proving
properties of fixedpointe: A function f , a domain D, and @ desired property Q .
Any one of thess thres slemente can bs used as the basis for induction.

The two claesical mesthods for provinn properties of leest fixedpointes use
induction on the function and on the domain. In the computationa! induction method
(deBakker and Scott (1969]), one firet proves the property Q over D for a very
simple function fg, and then successively treats better approximations f, of ¢ ,

18

€'ig oy O'ly swoiboid a8y} 40 sjulodpaxiy jo §8s a3y} j0 aingdnuys ayl - ¢ "big

pauijapun 3s(a

| UG O=X }I €'y Py £y 'y Iy 0'ly ’
(X)) uolouny By l--— g= — — — — —————y————— s s e s g
| | =
o
<
] * ’ p
<
$ —
=
a
SUOIjouUN) IDJO} 9y | - ~LLLLLLLAN e O L p——" —— _ Il@.}f

I = e e e e e . e e et e 0 — — —————— = 4

In the structural induction method (Burstall (1969)) one uses Induction over the
elemente of the domain 0, leaving f and O unchanged.

While these two general methods, appropriately modified, can siso be used to
prove properties of the optimal fixedpoint in some cases, uwe euggest a new
induction method (called assertion !nduction) which uses the property Q ae ths basle
for induction. Eve though this third typs of induction has been totaliy ignored

in the leaet fixeipoint approach, it turns out to be a very uesful technique Iin
the optimal fixedpoint approach,.

Hhat we actually prove in the assertion induction mathod is that any fixedpoint ¢
of the program belonging to some given subset S of partial functions has the
property Q(f] . The tact that the optimal fixedpoint 0 posessess the deeired
property is derived cither as a special case (if g ¢S), or as @ reeult of some
further argumentation (bassd on the definition of 9 as the gresteet
which ie fxp-coneistent).

ixgdpoint

Note that € may contain functions whi:h are not fixedpointe of the program, and
theee furctione need not have the property Q . The assertion induction method
only ehows that all functione in S which are fixedpoints of the program have

proper'y Q . The rois of the subset S is to ruie out certain unuanted fixedpoints
which do not have the desired property Q .

T ae Assertiorn: Induction Method

Given: A recureive program P : F(x) <ee P[F](x) , & property Q{") , and a eubest S
of partial functione.

Goal: To prove that Q(f) holds for any fixedpoint f of P such that f¢S .
Method: Find a eequence of predicates Q,(F] , ie8,1,2,... euch that:

(a) Qy(f) hoide for any f¢S .

(b) 1t Qf] hoide for some ¢S and ?(f)¢S
holds.

s then Oiol {r [f]]

(c) For any ¢S , if Q(f) hoide for all |
holde.

» then Qlt] aleo

Thie method can be justitied by the foliouing srgument: By part (e), any
tixedpoint ¢S hae property Qg(f) . By part (b), if & function #¢5 hae property

20

Q(ft] ., and P[f}¢S , then P(f) h3a property Q,,(P[f)) . But if ¢ ig a t ixedpoint,

then fef(f] eo T(f})c¢S , and f has property Q,,(f] . By induction, any fixedpoint

f¢S has the nroperties Q,(f] for i+8,1,2,... . Thue, part (c) impliee that ¢ hae

property Qlf) . Note that since f ie replaced by *(f} in the induction etep, eny

t uhich is not a fixedroint of ¢ 19 not guaranteed to heve ail the propertise Q; .

] We illustrate this method with the following recureive

program over the natural
numbers:

P4t F(x) <ees if Fx+1'>0 then Fixal)s} else @ .

The least fixedpoint of this program is everywhere undefined. We would

ke to
Prove that the optimal fixedpoint of thie program

is the constent functlon

f(x)e@ for any natural number x .

We first prove tuo properties of the fixedpoints of P4 which enable ue to
properly choose the subset S of partial functions:

(i) For any fixedpoint f of P4 and for any natural number x
flx+1) is undefined if and only if flx) is undefined.

To shou this, assume thet f(xsl) ig undefined; then clearly (f) (x) = if tixel)>0
then ¢(x+l) else B8 cannot be defined. Since fix)er(f) (x)

v fix) ie aleo undefined.
is defined, then *(f)(x) ie aleo defined, and eince

On the other hand, if f(xel)
fix)alt)(x) , #i{x) is defined.

(i) For any fixedpoint f of P4 and for any natural number x ,
fixe1)=0 if and only if flx)=0 .

Thie can be shoun in exact ¥ the same way as in part (i) above.

These tuo properties characterize two poseibie fixedpoints of the
which ie everywhere undefined and g which ie everywhere zero.
shou that the recursive program hae no other fixedpoints, end therefore whiie
e the program’'s least fixedpoint, g is the program’s optime! fixedpoint.

program P4 ;¢
Our aim now 1a to

The above two properties imply that any fixedpoint of P4 is elther totaiiy
defined or totally undefined, and that for any totai fixedpoint h , el ther hix) «@

,-\ for all x or hix)wd for ail x . Therefore we define S as the set of all total

functions which are everywhere greater then zero, and try to prove that P4 hae no
tixedpoint in S .

21

In order to achieve this, us fcrmally definc the predicata O(f) to be alu e
"talse”". The sequence of intermediate predicates ue use is:

. Bt oo

Q,7¢) s trus i* andonly if f(x)>i for all ratural numbers x

Step a: By the definition of S, any f¢S is everyuhere greater than
r zero, and therefore Ogl(f) holds.

Step b: Suppose 0,{f) holds for some i and f¢S . Then by definition,
t{x)>i for all natural numbers x . Using thiu property, we
can simplify the expression f[f) (x) :

£l) @ if f(xel)>B then fxel)+]l olse B
= fixel)sl,

Since f(x+l)>i , we have f(f)(x)>i+l . Therefore Q,,[r(¢)]
also holds.

Step c: Suppose that some total function f¢5 satisfies Q,(f) for &

i « Then for any natural number x , ¢(x)>i for all i , and
this is clearly a contradiction. Therefore any such f aleo
satisfies Q(f) which is aluays "false".

This completes the induction step, and the method thus guarantees that S doee not
contain any fixedpoint of P4 ,

Thus far uwe have introduced the new assertion induction method. Ae mentioned
above, the two claeeical proof methods can also be used to prove propertiee of
the optimal fixedpoint. We shou here an appropriately modified vereion of the
structural induction method.

T he Structural Induction Method

The satructural induction method is intended to prove that a fixedpoint f of a
recursive program P has some "pointuise" property Q{f)(x) for all x in the domain
D . The main idea is to partition D into subeete Sq¢,5,,... s.~h that

D= U §,
jeo

22

L b e e e e e e e i . 2 Ty i o i S pey - 2 - L

and to prove that Q(f) (x) holds for all x¢S; using induction over the index |
Thus, one has to show that for any i , if Q(f).(x) holde for all

i-1
x¢ U S,
j=8

then Q(f) (x) holds for all xcS,.

T L S W sy

This implication is usually proved by freely replacing any occurrence of f by
r(f] (since f is a fixedpoint) and applying the induction hypothssie to the
resultant expression. This method can also be used to prove properties of optimal
tixedpoints, but one usually has to apply some additlonal specific reaeoning
techniques, such as equation solving or case analysis of poesible values,

We illustrate this method with the follouwing program PS5 over the natural numbere:
PS: Fi(x) <«= if x=@ then @ else F(x-F(x)) .

We would like to prove that ths optimal fixedpoint f of PS eatiefles:
Qlf) (x) ¢ $(x)=0

for any natural number x ,

We partition the domain of natural numbers in the follouing uayt

59- IGI S|-(ll 52' (2' ve

The fact that Q(f] (@) holds (i.e., f(B)=B) is a direct consequence of the
definition of PS5 .

-1 .
Assume that we have already shoun that Qifl(x) holds for all x ¢ U 5
j=8 1
(i.e., for all @sxsi-1); we nou prove that Qlf)(x) holde for all xeS; (i.e., for
:

x=i). Since f is a fixedpoint of PS and i>8 , ws have:

R g

f(i) = £(i=-¢(i)) .
We use case analysis in order to find all the possible valuee of f(i)

One possible value of (1) I|s clearly undefined. In order to check whether t(0)

23

B e s -l

optimal

has any possible defined value assume that f(il=k for some natural number k
Substituting this value into the definition of (i} , we get:

L3

We consider two possible cases:

(a)

(b)

We have thus shoun that the only two possible valuss of fli) are undefined and 8 .
By

VI. Conclusion

In this paper we have presented the optimal fixedpoint approach towards recureive

programs. While it is clearly appealing from a theoretical point of view, it has
a draubock

o fli) = f0i-f(i)) = $(i-Kk) ,

the definition of the optimal fixedpoint, ws can now deduce that f(i)a8

Since this holds for any natural number i , the optimal fixedpoint le everyuhere
defined as zero.

It ke® , we obtain the requirement
0= (i)

and this value is clearly consistent with our assumption
that f(i)eke® . Thus zero is a rossible value of f(i) .

It k>@ , we obtain the requirement that

fli-k) > @ ,

but since i>0 and k>8 , i-k<i , and this contradicts what
we know (in the induction hypothesis) about the optimal
fixedpoint:

f{x)=B for all x , Jsx2i .

Therefore f(i) cannot have the value k for any k>0 .

in practice: it may be either Impossible or extremely hard to find the

fixedpoint of some recursive programs., While we cannot deveiop perfect
implementations, we can try {perhaos using heuristic techniques)
much information from the program as possible. Such an implementation Hill yield
the optimal firedpoint for certain ciasses of recursive programs; it il
some intermrdiate fxp-consistent fixedpoint for other classes: and

to extract ae

in the woret

case uwill yield the least fixedpoint of the program (as computed by the claseical
etack implementation). By insisting on finding a more informative solution of a
recureive program than the least fixedpoint, it is natural that the efficiency of

compute l
s
1

r{

Y Y

R e NN TEURE
e e ey e ——— e o e

computation rules is reduced and the complexiity of proof techniquee s
increased.

The development of this new approach is stll| underway, both in Ite theoretlcal
and practical aspects.

AR AR RRARK KRR
Footnotes

(i) All functions in this program map natural numbers into natural numbere; thue,
x-]1 ie defined to be B for x=8.

(ii) The theorem is proved in Manna and Shamir {1975), Theorem 3.

(iii) For a more rigorous statement of this result and its proot eee Theorem S in
Hanna and Shamir (1975].

Acknowledgement. We are indebted to Nachum Dershowitz, Steve Neee and Richard
Waldinger for their critical reading ¢t the manuscript,

References

1. BURSTALL [1969].
Burstall, R. M. Proving Properties of Programe by Structural Induction,
Computer J., Vol. 12, No. 1 (Feb. 1969), pp. 41-48.

2. DeBAKKER and SCOTT (1969).
DeBakker, J. W. and Scott, D. A Theory of Programe.
Unpublished memo (Aug. 1969).

3. HMANNA [1974),
Manna, Z. Mathematical Theory of Computation.
McGraw-Hitl, N.Y. (1974),

4. MANNA and SHAMIR (1975].
Manna, Z. and Shamir, A. The Optimal Fixedpoi-~t of Recursive Prcgrams.
Proc. of the Symposium on Theory of Computing, Albuguerque, New Mexico (May 1975).

S. SHAMIR (1976],
Shamir, A. The Fixedpoints of Recursive Programs.

3 Ph.0. Thesis, App!led Mathematicse Dept., Welzmann Institute of Sclence, Rehovot,
lerael (1976).

25

